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We will base our analysis on Ziax’s [2] well known solution of the transport
problem obtained with a variational method:
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q = k— K. The integration dS extends over the Fermi surface, whose free area
is S. Phonons of branch 4 and wavevector q have frequencies v, (q) and polariza-
tion weetors e;. The electron-phonon interaction has been approximated by the
form factor ¥"(|q|) that only depends on the magnitude of the momentum
transfy q = k — k'. 3 is the ion mass, N the number of unit cells per unit volume
and vand v* the velocities of an electron at the Fermi surface. The rest of the quan.
tities Rave their usual meaning. An earlier calculation of resistivities for some
polysafent metals [3] with the use of Eq. (1) was in good agreement with experi-
ments and the results obtained in this paper are also rcasonable, so we believe
that Eq. (1) is accurate enough in this context. It is interesting to note that we
could in principle make a selfconsistent treatment, if we knew how the pseudo-
potential changed with pressure. Once we had this information we could calculate
changes in the phonon frequencies, the shape of the Fermi surface and the density
of states of the conduction electrons, but such a procedure would not only be very
difficslt but also in practice give inaccurate results. Instead we shall use all
availsble information to see how different parts in Eq. (1) contribute to a change
in p. For a discussion of the volume dependence it is very convenient to consider

(dingidIn ¥) and we write
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The fiest term on the right hand side of Eq. (2) comes from the volume dependence
of theband density of states at the Fermi level, i.e. essentially from dS/v, and we
hevo taken an average over the Fermi surface in the form of an effective mass. We
will always consider the resistivity at high temperatures (i.e. 7 3 ©@p)and then the
]::::-&cqnendn come in as 1/w3(q) in the integrand of Eq. (1). This leads to
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‘.l:be m spectrum is differently weighted in different properties like e.g. the
¢ ctrieal resistivity and the vibrational specific heat. The relative frequency shift
is not the same for all phonons and we must therefore be careful to specify which

_.' t we are idering. This is why we use the notation Ox and it does
not imply the use of a Debye model or any other model. (d In Ir/d In V) contains
the effiect of a variation in the form factor ¥"(q). Finally there remain some terms
that we assume to vary linearly with the lattice dimension and this gives + 1 in
the right hand side of Eq. (2). We shall later consider volume changes caused by
extermal pressure and by the thermal expansion so we do not yet specify whether
the temperature or the p is to be kept constant in the derivatives in Eq. (2).
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The thermal
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where K 7 is the isothermal compressibility and S the entropy. At low temperatures
the thermal expansion of a non-magnetic metal ists of one contribution from
the conduction electrons, which is linear in 7', and one phonon contribution which
goes like T3. The entropy of the electrons is proportional to the total cilective
electron mass and it is evident from Eq. (3) that a measurement of the low
temperature thermal expansion can give information about the volume dependence
of the effective mass. A review of this method has been given by CoLuixs and
WuITE [4]. A me t of the p e depend of the critical field of a
superconductor can in principle give the same information about the effective
mass. At present this latter type of experiment seems to be less accurate than the
first method [5]. In both cases the change in the fotal effective mass meqr is ob-
tained. If we neglect the influence of electron-electron interaction, we can write

ert = mp (1 + 4) (4)

where 1 + 1 is the factor by which the band mass my is increased due to electron-
phonon interaction. For 4 we can write 6]
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Therefore, in analogy with Eq. (2)
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Like in Eq. (2) the term — 2(d In©,/d In V) is the effect of shifts in the phonon
frequencies but now they are averaged according to Eq. (5). The last term,
(dInI;/dIn V), is the result of a change in ¥(g) in Eq. (5). The derivatives in
Eq. (6) are to be taken at constant temperature (cf. Eq. (3)). There is no a priori
reason why the various band masses we have introduced should have the same
I depend as they correspond to different averages over the Fermi
surface. However, we do not expect them to behave in a very different way, and
moreover this point is not crucial for any of the conclusions in this paper.

Pressure Dependence of the Resistivity

The resistance of various metals under pressure has been measured by Bring-
MAN [7]. After taking into account that we want resistivity instead of resistance,
we have at room temperature and in the limit of small volume changes
(dlnp/dIn V)7 = 6.9. FisHER [8] obtained the value 6.5, but BRIDGMAN considers
his experimental method to be somewhat uncertain. Throughout this paper we
will use the compressibility and thermal expansion coefficient given by GSCHNEI-
pEr [9] to convert from experimentally determined pressure or temperature
derivatives to the corresponding volume derivatives.

The phonon term, (d InOg/d InV)r, could in principle be obtained from

ts of ph fi jes in lead under pressure. The experimental
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